Mathematics Calculation Policy

October 2019

Sacred Heart Catholic Primary School, Ilkley, a Voluntary Academy

TEACHING THE RANGE OF SUBJECTS WITHIN A CATHOLIC SCHOOL

Academy Council's Curriculum Statement

Catholic schools are required by the Catholic Church to provide "a synthesis of culture and faith as well as a synthesis of faith and life. The first is reached by integrating the different aspects of human knowledge through teaching all subjects in the light of the Gospel; the second by encouraging the growth of the virtues characteristic of the Christian." (Congregation for Catholic Education, Rome 1977).

In Sacred Heart School, we draw on a rich treasury of resources gathered over centuries, in literature, art, philosophy and music together with the wealth of information available in this modern day in the areas of mathematics, science and geography in order to create a curriculum which "engages young people and equips them for life and work" (Ref: The Distinctive Curriculum of the Catholic School NBRIA 2012).

We are mindful of the Catholic tradition which has long encouraged critical enquiry, reasoning and reflection (NBRIA 2012) and we ensure that all of our staff receive regular training so that their skills and knowledge in every taught subject is current and highly effective.

It is our overall aim that Sacred Heart School will develop every aspect of the individual pupil: social, intellectual, emotional, moral and spiritual. We are conscious that if any of these elements were to be overlooked, all others would suffer.

Furthermore, we do not consider religious education to be simply "one subject among many but the foundation of the entire educational process" (Bishops' Conference of England and Wales, Religious Education in Catholic Schools, 2000, n.4). Every effort is consequently made to let the light of the Gospel provide an added faith dimension where this is appropriate to the presentation of the other subjects on the curriculum.

The opinions and moral character of our pupils thus formed will, we trust, provide the essential link in handing on the faith with its accompanying Christian virtues, as mandated by Christ (Mt. 28.19f.), to subsequent generations.

Our Philosophy

- We aim to develop a love for Mathematics;
- We encourage children to develop skills to communicate effectively in mathematics;
- We recognise Mathematics as a core subject in the National Curriculum and as a prerequisite for educational and social progress empowering children to communicate creatively and imaginatively;
- We aim to provide an environment for mathematical development that is stimulating and is characterised by high expectations of success so that the fullest potential of each individual may be achieved.

Key Stage 1

Year 1

Key Language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

	Mental Calculations	Written Calculations	Default for ALL Children		
$\mathbf{Y 1}$	Number Bonds Add three 1-digit numbers, spotting doubles or pairs to 10 in 1s from a given 2-digit number Add two 1-digit numbers		Count in 1 s		
Count on in 10s from any given 2-digit number					
Add 10 to any given 2-digit number					
Use number facts to add 1-digit numbers to 2-					
digit numbers				\quad	Count on 1 from any given 2-digit number
:---:					
Add by putting the larger number first					

Key Language: Number bonds, counting back, pairs, subtract, take away, facts.

Year 2

Key Language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Key Language: Number bonds, counting back, pairs, subtract, take away, facts.

Y2	Number bonds - know all the pairs of numbers which make all the numbers to 12 Count back in 1s and 10s from any given 2- digit number		Know pairs of numbers which make each total up to 10
	Subtract a 1-digit number from a 2 -digit number by counting back in 1s number using number facts, including	Subtract 10 and small multiples of 10 from a 2- digit number by counting back in 10s	

| | bridging multiples of 10 e.g. $56-3$ e.g. 53
 -5 | |
| :--- | :--- | :--- | :--- |
| Subtract 10 and small multiples of 10 from
 any given 2 -digit number
 Subtract any pair of 2 -digit numbers by
 counting back in 10s and 1s or by counting
 up | | |

	Use place value and number facts in mental multiplication e.g. 30×5 is $15 \times$ 10 Partition teen numbers to multiply by a 1digit number e.g. 3×14 as 3×10 and $3 \times$ 4 Double numbers up to 50		
Key Language: Half, share, even, odd, array, sets of.			
$\begin{gathered} \text { Y3 } \\ \div \end{gathered}$	Know by heart all the division facts derived from the $\times 2, \times 3, \times 4, \times 5, \times 8$ and $\times 10$ tables Divide whole numbers by 10 or 100 to give whole number answers Recognise that division is not commutative Use place value and number facts in mental division e.g. $84 \div 4$ is half of 42 Divide larger numbers mentally by subtracting the 10th multiple as appropriate, including those with remainders e.g. $57 \div 3$ is $10+9$ as 10×3 $=30$ and $9 \times 3=27$ Halve even numbers to 100, halve odd numbers to 20	Performing division above the $10^{\text {th }}$ multiple using horizontal or vertical jottings Add method Giving a Remainder as a whole number Add method Find unit fractions of quantities and begin to find non-unit fractions as quantities Add method	Know by heart the division facts derived from the $\times 2, \times 3, \times 5$ and $\times 10$ tables Halve even numbers up to 50 and multiples of 10 to 100 Perform divisions within the tables including those with remainders e.g. $38 \div 5$

Year 4

Key Language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

	Subtract, when appropriate, by counting back or taking away, using place value and number facts Subtract $£ 1,10$ p, 1 p from amounts of money Find change from $£ 10, £ 20$ and £50	Subtracting fractions from one whole ADD METHOD HERE	
Key Language: Count on, times, double.			
$\begin{gathered} \text { Y4 } \\ \mathbf{x} \end{gathered}$	Know by heart all the multiplication facts up to 12×12 Recognise factors up to 12 of 2-digit numbers Multiply whole numbers and 1-place decimals by $10,100,1000$ Multiply multiples of 10, 100 and 1000 by 1-digit numbers e.g. 300×6 e.g. 4000×8 Use understanding of place value and number facts in mental multiplication e.g. 36×5 is half of 36×10 e.g. $50 \times 60=$ 3000 Partition 2-digit numbers to multiply by a 1-digit number mentally e.g. 4×24 as $4 \times$ 20 and 4×4 Multiply near multiples by rounding e.g. $33 \times 19 \text { as }(33 \times 20)-33$	Partitioning (Grid Multiplication) to multiply Vertical Written Method (Ladder Method) $\begin{array}{r} 234 \\ \times \quad 6 \\ 1200 \\ 180 \\ +\quad 24 \\ 1 \\ \hline 1404 \\ \hline \end{array}$	Know by heart multiplication tables up to $10 \times$ 10 Multiply whole numbers by 10 and 100 Use the grid method to multiply a 2-digit or a 3 -digit number by a number ≤ 6

	Find doubles to double 100 and beyond using partitioning Begin to double amounts of money e.g. $£ 35.60$ doubled is $£ 71.20$		
Key Language: Half, share, even, odd, array, sets of.			
$\begin{gathered} \text { Y4 } \\ \div \end{gathered}$	Know by heart all the division facts up to $144 \div 12$ Divide whole numbers by 10,100 , to give whole number answers or answers with 1 decimal place Divide multiples of 100 by 1-digit numbers using division facts e.g. $3200 \div 8$ $=400$ Use place value and number facts in mental division e.g. $245 \div 20$ is half of 245 $\div 10$ Divide larger numbers mentally by subtracting the 10th or 20th multiple as appropriate e.g. $156 \div 6$ is $20+6$ as $20 \times$ $6=120 \text { and } 6 \times 6=36$ Find halves of even numbers to 200 and beyond using partitioning	Written Method for Division (Chunking) ADD METHOD HERE Expressing remainders as whole numbers ADD METHOD HERE Reducing fractions into their simplest form ADD METHOD HERE Find unit and non-unit fractions of larger amounts ADD METHOD HERE	Know by heart all the division facts up to $100 \div$ 10 Divide whole numbers by 10 and 100 to give whole number answers or answers with 1 decimal place Perform divisions just above the 10th multiple using the written layout and understanding how to give a remainder as a whole number Find unit fractions of amounts

Upper Key Stage 2

Year 5

Key Language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

	numbers e.g. $82472+30004$ Add decimal numbers which are near multiples of 1 or 10 , including money e.g. $6 \cdot 34+1 \cdot 99 \text { e.g. } £ 34 \cdot 59+£ 19 \cdot 95$ Use place value and number facts to add two or more 'friendly' numbers, including money and decimals e.g. $3+8+6+4+7$ $\text { e.g. } 0 \cdot 6+0 \cdot 7+0 \cdot 4 \text { e.g. } 2056+44$	Addi	$\mathbf{f 1 0 s}$ $\mathbf{£}$ 5 \mathbf{f} $\mathbf{2}$ \mathbf{f} $\mathbf{7}$ Relate DD METHO	\qquad	Ips 7 5 2 \qquad ions	
Key Language: Number bonds, counting back, pairs, subtract, take away, facts.						
$\begin{gathered} \text { Y5 } \\ - \end{gathered}$	Subtract numbers with 2 significant digits only, using mental strategies e.g. 6.2-4.5 e.g. 72000-47000 Subtract 1- or 2-digit multiples of 10, 100, 1000, 10000 and 100000 e.g. $8000-3000$ e.g. $60000-$ 200000 Subtract 1- or 2-digit near multiples of 10, 100, 1000, 10000 and 100000 from other numbers e.g. $82472-30004$ Subtract decimal numbers which are near multiples of 1 or 10 , including money e.g. $6.34-1.99$ e.g. $£ 34.59-£ 19.95$ Use	Expanded Column Subtraction Contracted Column Subtraction				Derive swiftly and without difficulty number bonds to 100 Use counting up with confidence to solve most subtractions, including finding complements to multiples of 1000 e.g. 3000-2387

Key Language: Count on, times, double.

Year 6

Key Language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

$\begin{gathered} \text { Y6 } \\ + \end{gathered}$	Know by heart number bonds to 100 and use these to derive related facts e.g. 3-46 $+0.54$ Derive, quickly and without difficulty, number bonds to 1000 Add small and large whole numbers where the use of place value or number facts makes the calculation do-able mentally e.g. $34000+8000$ Add multiples of powers of 10 and near multiples of the same e.g. $6345+199$ Add negative numbers in a context such as temperature where the numbers make sense Add two 1-place decimal numbers or two 2-place decimal numbers less than 1 e.g. $4 \cdot 5+6 \cdot 3 \text { e.g. } 0 \cdot 74+0 \cdot 33$ Add positive numbers to negative numbers e.g. Calculate a rise in temperature or continue a sequence beginning with a negative number		Derive, swiftly and without difficulty, number bonds to 100 Use place value and number facts to add 'friendly' large or decimal numbers e.g. 3•4 + 6.6 e.g. $26000+54000$ Use column addition to add numbers with up to 4-digits Use column addition to add pairs of 2-place decimal numbers
Key Language: Number bonds, counting back, pairs, subtract, take away, facts.			

Know by heart all the multiplication facts up to 12×12

Multiply whole numbers and decimals with up to 3 places by 10, 100 or 1000
e.g. $234 \times 1000=234000$ e.g. $0 \cdot 23 \times$ $1000=230$

Identify common factors, common multiples and prime numbers and use factors in mental multiplication e.g. $326 \times$ 6 is 652×3 which is 1956 Use place value and number facts in mental multiplication e.g. $4000 \times 6=24000$ e.g. $0.03 \times 6=0.18$

Use doubling and halving as mental multiplication strategies, including to multiply by $2,4,8,5,20,50$ and 25 e.g. 28×25 is a quarter of $28 \times 100=700$

Use rounding in mental multiplication e.g

$$
34 \times 19 \text { as }(34 \times 20)-34
$$

Multiply 1-and 2-place decimals by numbers up to and including 10 using place value and partitioning e.g. 3.6×4 is
$12+2 \cdot 4$ e.g. $2 \cdot 53 \times 3$ is $6+1 \cdot 5+0 \cdot 09$
Double decimal numbers with up to 2 places using partitioning e.g. 36.73 doubled is double 36 (72) plus double 0.73 (1.46)

Know by heart all the multiplication facts up to

$$
12 \times 12
$$

Multiply whole numbers and 1- and 2-place decimals by 10,100 and 1000

Use an efficient written method to multiply a 1-digit or a teen number by a number with up to 4 digits by partitioning (grid method)

Multiply a 1-place decimal number up to 10 by a number ≤ 100 using the grid method

Key Language: Half, share, even, odd, array, sets of.

| | percentages, including in different
 contexts | |
| :--- | :---: | :---: | :---: |
| Recognise a given ratio and reduce a
 given ratio to its lowest terms | | |

